Problem 2.1

When a baseball flies through the air, the ratio $f_{\text {quad }} / f_{\text {lin }}$ of the quadratic to the linear drag force is given by (2.7). Given that a baseball has diameter 7 cm , find the approximate speed v at which the two drag forces are equally important. For what approximate range of speeds is it safe to treat the drag force as purely quadratic? Under normal conditions is it a good approximation to ignore the linear term? Answer the same questions for a beach ball of diamter 70 cm .

Solution

The force due to air resistance on a projectile is modelled by

$$
\begin{aligned}
\mathbf{f} & =-f(v) \hat{\mathbf{v}} \\
& =-\left(f_{\text {lin }}+f_{\text {quad }}\right) \hat{\mathbf{v}},
\end{aligned}
$$

where

$$
f_{\text {lin }}=b v \quad \text { and } \quad f_{\text {quad }}=c v^{2} .
$$

For spherical objects with diameter D,

$$
b=\beta D \quad \text { and } \quad c=\gamma D^{2},
$$

and in air at STP,

$$
\beta \approx 1.6 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \quad \text { and } \quad \gamma \approx 0.25 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{4}
$$

Consequently, the ratio of the quadratic drag force to the linear one is

$$
\frac{f_{\text {quad }}}{f_{\text {lin }}}=\frac{c v^{2}}{b v}=\frac{c v}{b}=\frac{\gamma D^{2}}{\beta D} v=\frac{\gamma}{\beta} D v .
$$

For a baseball and a beach ball,

$$
\left\{\begin{array}{rl}
\text { Baseball: } & \frac{f_{\text {quad }}}{f_{\text {lin }}} \approx \frac{0.25 \frac{\mathrm{~N} \cdot \mathrm{~s}^{4}}{\mathrm{~m}^{4}}}{1.6 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}\left(7 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) v \\
\text { Beach Ball: } & \frac{f_{\text {quad }}}{f_{\text {lin }}} \approx \frac{0.25 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{4}}}{1.6 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}\left(70 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) v
\end{array} .\right.
$$

In order to find the approximate speed at which the two drag forces are equally important, set this ratio equal to 1 and solve for v.

$$
\left\{\begin{array}{rl}
\text { Baseball: } & 1=\frac{0.25 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{4}}}{1.6 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}\left(7 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) v
\end{array} \quad \rightarrow v \approx 1 \frac{\mathrm{~cm}}{\mathrm{~s}}, ~\left(70 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) v \quad \rightarrow \quad v \approx 1 \frac{\mathrm{~mm}}{\mathrm{~s}}\right.
$$

In order to find the approximate speed at which the quadratic drag force is a hundred times greater than the linear one, set the ratio equal to 100 and solve for v.

$$
\left\{\begin{aligned}
\text { Baseball: } \quad 100=\frac{0.25 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{4}}}{1.6 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}\left(7 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) v \quad \rightarrow v \approx 1 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\text { Beach Ball: } \quad 100=\frac{0.25 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{4}}}{1.6 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}\left(70 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) v \quad \rightarrow \quad v \approx 10 \frac{\mathrm{~cm}}{\mathrm{~s}}
\end{aligned}\right.
$$

Under normal conditions, a thrown baseball and a thrown beach ball travel faster than these speeds. Therefore, the approximate range of speeds that one can ignore the linear drag force is

$$
\left\{\begin{array}{rl}
\text { Baseball: } & v \geq 1 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\text { Beach Ball: } & v \geq 10 \frac{\mathrm{~cm}}{\mathrm{~s}}
\end{array} .\right.
$$

